Four years of ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area

F. Hendrick¹, J.-F. Müller¹, K. Clémer^{1,*}, M. De Mazière¹, C. Fayt¹, C. Hermans¹, T. Stavrakou¹, T. Vlemmix^{1,2}, Wang³, and M. Van Roozendael¹

¹Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium ²Delft University of Technology (TU-Delft), Delft, The Netherlands ³Institute of Atmospheric Physics/CAS, Beijing, China *Now at Institute of Astrophysics, KU Leuven, Leuven, Belgium

ronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

Ρ.

Nitrous acid (HONO) in the troposphere

• HONO is a source of OH radicals through its photolysis, especially in the early morning:

$\text{HONO} + h\nu \rightarrow \text{OH} + \text{NO}$

•Formation mechanisms still not well understood and poorly quantified, especially during daytime

Main source of HONO: 2 NO₂ + H₂O + surface \rightarrow HONO + HNO₃

Realistic model simulations of HONO levels are difficult

•HONO measurements are generally sparse in time because mainly resulting from field campaigns

Continuous MAX-DOAS measurements of HONO can be highly valuable

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

Observation sites

-Elevation angles: 2°, 4°, 6°, 8°, 8°, 10°, 12°, 15°, 30°, 90° (zenith)

-Measurements from ~85°SZA sunrise to 85°SZA sunset

-15' per scan

BIR

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria 3

belspo

MAX-DOAS retrieval algorithm

Examples of HONO and NO₂ vertical profile retrievals

Seasonal variation of HONO and NO₂

Near-surface (0-200m) concentration (ppb) at local noon

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

BIRA-IASB

6

Seasonal variation of HONO at local noon

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

7

belspo

Seasonal variation of NO₂ at local noon

belspo

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

BIRA-IASB

8

HONO vs NO₂ and HONO vs aerosols correlations at local noon

BIRA.IASB

belspo

HONO/NO₂ ratio at local noon

VMR/VMR

EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria aeronomie be

BIRA-IASB

Diurnal variation of HONO

Near-surface (0-200m) concentration (ppb)

Vertical column density (x10¹⁵ molec/cm²)

•HONO concentration and vertical column have very similar diurnal cycle

11

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

BIRA.IASB

OH production from HONO and ozone

- Production of OH from HONO estimated from retrieved nearsurface [HONO] and calculated photolysis rate J_{HONO}
- Production of OH from O₃ estimated from assumed 30 ppbv O₃, [H₂O] from ECMWF ERA-Interim, and calculated $J_{O3\rightarrow O1D}$

 $O_3 + h\nu (\lambda < 340 \text{ nm}) \rightarrow O(^1D) + O_2$

 $O(^{1}D) + H_{2}O \rightarrow 2 OH$

- Photolysis rates calculated using the TUV package including the SDISORT radiative transfer code, with
 - No cloud
 - MAX-DOAS AOD, SSA=0.9, asymmetry parameter=0.7
 - Albedo=0.05 except over snow (0.5)
 - Snow presence and ozone total columns from ECMWF ERA-Interim

Diurnal variation of OH production

0-200 m layer

- Maximum of OH production in the morning
- Maximum of OH production larger at Beijing than at Xianghe
- HONO is by far the largest source of OH radicals except in summer where the contribution of O₃ dominates from mid-morning until midafternoon.

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria 13 Delspo

Concluding remarks

- •For the first time, the seasonal and diurnal variations of HONO and its main precursor NO₂ has been investigated in and in the vicinity of a megacity using multi-year MAX-DOAS observations.
- •The very similar seasonal and diurnal cycles obtained for HONO surface concentration and vertical column suggest that these cycles are mainly driven by the photochemistry, while the dilution effects appear to play only a minor role.
- •The stronger correlation of HONO with NO_2 and also with aerosols observed in Beijing suggests larger role of NO_2 conversion into HONO in the Beijing city center than at Xianghe.
- •The estimation of OH production from HONO and O_3 photolysis indicates that HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O_3 dominates in summer from mid-morning until mid-afternoon.

Acknowledgements

- •Belgian Federal Science Policy Office, Brussels (PRODEX contract A3C and AGACC-II project)
- •EU FP7 projects NORS (contract 284421) and SHIVA (contract 226224)

15

Scans selection based on retrieval fit results

Beijing 21/01/2009 ~10:15 AM

16

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

BIRA-IASB

Diurnal variation of HONO and NO₂

aeronomie-be EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

belspo

17

Belgian Science Policy Offic

DOAS settings

- The following settings are used for the DOAS analysis:
 - Fitting window: 337-375 nm
 - Fitted species: HONO, NO₂, O₃, O₄, BrO, HCHO, Ring effect
 - HONO XS: Stutz et al. (2000) at 296 K
- For each scan, DSCD_{off-axis} = SCD_{off-axis} SCD_{zenith of the scan} used by the profiling algorithm

Comparison to CAREBeijing2006 data (1)

BIRA.IASB

EGU General Assembly 2013, 8-12 April 2013, Vienna, Austria

19

Comparison to CAREBeijing2006 data (2)

CAREBeijing2006 HONO measurements at Yufa: in-situ long-path absorption photometry (LOPAP); see Lu et al., ACPD, 2012

HONO vertical profile retrieval

Beijing 21/01/2009 ~10:15 AM

