Four years of ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area

F. Hendrick¹, J.-F. Müller¹, K. Clémer^{1,*}, M. De Mazière¹,
C. Fayt¹, C. Gielen¹, C. Hermans¹, G. Pinardi¹, T. Stavrakou¹,
T. Vlemmix^{1,2}, P. Wang³, and M. Van Roozendael¹

¹Belgian Institute for Space Aeronomy (IASB-BIRA), Brussels, Belgium ²Delft University of Technology (TU-Delft), Delft, The Netherlands ³Institute of Atmospheric Physics/CAS, Beijing, China *Now at Institute of Astrophysics, KU Leuven, Leuven, Belgium

eronomie be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

Atmos. Chem. Phys. Discuss., 13, 10621–10660, 2013 www.atmos-chem-phys-discuss.net/13/10621/2013/ doi:10.5194/acpd-13-10621-2013 © Author(s) 2013. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Four years of ground-based MAX-DOAS observations of HONO and NO₂ in the Beijing area

F. Hendrick¹, J.-F. Müller¹, K. Clémer^{1,*}, M. De Mazière¹, C. Fayt¹, C. Hermans¹, T. Stavrakou¹, T. Vlemmix^{1,2}, P. Wang³, and M. Van Roozendael¹

¹Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium ²Delft University of Technology (TU-Delft), Delft, the Netherlands ³Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China now at: Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Leuven, Belgium

Received: 26 March 2013 - Accepted: 12 April 2013 - Published: 22 April 2013

iscussion

Papel

Pa per

iscussion

pe

Nitrous acid (HONO) in the troposphere

• HONO is a source of OH radicals through its photolysis, especially in the early morning:

$\text{HONO} + h\nu \rightarrow \text{OH} + \text{NO}$

- •Formation mechanisms still not well understood and poorly quantified, especially during daytime
 - Main source of HONO: 2 NO₂ + H₂O + surface \rightarrow HONO + HNO₃
- •HONO measurements are generally sparse in time because mainly resulting from field campaigns (LOPAP and LP-DOAS)

Observation sites

-Elevation angles: 2°, 4°, 6°, 8°, 8°, 10°, 12°, 15°, 30°, 90° (zenith)

-Measurements from ~85°SZA sunrise to 85°SZA sunset

-15' per scan

BIR

aeronomie-be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

DOAS settings

bePRO profiling tool

Examples of HONO and NO₂ vertical profile retrievals

Example of aerosol extinction profile retrievals

Beijing 21/01/2009 ~10:15 AM

Selection of 'good' MAX-DOAS scans

Beijing 21/01/2009 ~10:15 AM

-RMS of fit results below a threshold value

-DOFS > 0.7

BIRA.IASB

-To be compared to the cloud screening approach based on the CI (cf. C. Gielen's presentation)

Error budget

Table 1. Error budget of the retrieved HONO and NO₂ near-surface (0–200 m) concentrations and vertical column densities (VCD). The total uncertainty is calculated by adding the different error terms in Gaussian quadrature.

	Beijing					Xianghe			
	0–200 HONO	0 m NO ₂	VC HONO	D NO ₂	0–20 HONO	0 m NO ₂	VC HONO	D NO ₂	
Total retrieval error (%) Uncertainty related to the a priori (%)	19 7	4 10	8 20	2.5 10	23 11	8 14	10 23	2.5 10	
Uncertainty on HONO or NO ₂ cross sections (%)	5	3	5	3	5	3	5	3	
Total uncertainty (%)	21	11	22	11	26	16	26	11	

2013 DOAS Workshop, 10-12 August 2013, Boulder, USA 10

Time-series of HONO and NO₂ surface concentration

Near-surface (0-200m) concentration (ppb) at local noon

BIRA-IASB

Belgien Science Policy Office

Seasonal variation of HONO and NO₂ concentrations at local noon

Near-surface (0-200m) concentration (ppb) at local noon

12

aeronomie be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

BIRA-IASB

HONO vs NO₂ and HONO vs aerosols correlations at local noon

aeronomie be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

BIRA-IASB

Diurnal variation of HONO

Near-surface (0-200m) concentration (ppb)

Vertical column density (x10¹⁵ molec/cm²)

•HONO concentration and vertical column have very similar diurnal cycle

aeronomie be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

BIRA.IASB

Comparison with other daytime (~12h LT) HONO measurements in China

OH production from HONO and ozone

- Production of OH from HONO estimated from retrieved nearsurface [HONO] and calculated photolysis rate J_{HONO}
- Production of OH from O₃ estimated from assumed 30 ppbv O₃, [H₂O] from ECMWF ERA-Interim, and calculated $J_{O3\rightarrow O1D}$

 $O_3 + h\nu (\lambda < 340 \text{ nm}) \rightarrow O(^1D) + O_2$

 $O(^{1}D) + H_{2}O \rightarrow 2 OH$

- Photolysis rates calculated using the TUV package including the SDISORT radiative transfer code, with
 - No cloud
 - MAX-DOAS AOD, SSA=0.9, asymmetry parameter=0.7
 - Albedo=0.05 except over snow (0.5)
 - Snow presence and ozone total columns from ECMWF ERA-Interim

Diurnal variation of OH production

0-200 m layer

- Maximum of OH production in the morning
- Maximum of OH production larger at Beijing than at Xianghe
- HONO is by far the largest source of OH radicals except in summer where the contribution of O₃ dominates from mid-morning until midafternoon.

aeronomie-be 2013 DOAS Workshop, 10-12 August 2013, Boulder, USA 17 DEISPO

Concluding remarks

- •First measurements of HONO in and in the vicinity of a megacity (Beijing) using a passive DOAS instrument.
- •The possibility of retrieving HONO near-surface concentration and vertical column by applying an OEM-based profiling tool to these MAX-DOAS measurements has been demonstrated.
- •The multi-year operation of the instrument allowed the study of the seasonal and diurnal cycles of HONO and its main precursor NO₂ in the Beijing area:
 - The HONO and NO₂ seasonal cycles are highly correlated
 - The heterogeneous conversion of NO_2 is the dominant source of HONO with a larger role played by the aerosols in the city center
 - The HONO seasonal and diurnal cycles mainly driven by the photochemistry, dilution effects likely play only a minor role
 - HONO is by far the largest source of OH radicals in winter as well as in the early morning at all seasons, while the contribution of O₃ dominates in summer from mid-morning until mid-afternoon

18

Acknowledgements

- •Belgian Federal Science Policy Office, Brussels (PRODEX contract A3C and AGACC-II project)
- •EU FP7 projects NORS (contract 284421) and SHIVA (contract 226224)

Thank you for your attention !

HONO/NO₂ ratio at local noon

VMR/VMR

BIRA-IASB

Comparison with other daytime (~12h LT) HONO measurements in China

Seasonal variation of HONO at local noon

Diurnal variation of HONO and NO₂

2013 DOAS Workshop, 10-12 August 2013, Boulder, USA aeronomie-be

Belgian Science Policy Offic

Comparison with Ma et al.

Photolysis rates

aeronomie-be

2013 DOAS Workshop, 10-12 August 2013, Boulder, USA

