El reto de medir componentes atmosféricos en el rango de las ppt mediante DOAS

Ley de Lambert Beer

 $\ln\left(\frac{I(\lambda)}{I_0(\lambda)}\right) = -\sum_i \sigma_i(\lambda) \int_0^L N_i dx$

Absorción de cada especie a lo largo del camino óptico

S

Espectroscopía de absorción diferencial

- La ley de Lambert Beer no es aplicable directamente a la atmósfera
- La atenuación de la luz también se produce por procesos de dispersión con moléculas o aerosoles.
- Las diferentes especies presentes en la atmósfera pueden absorber en las mismas longitudes de onda y no se puede separar la absorción que corresponde a cada una.

Espectroscopía de absorción diferencial en la atmósfera

$$\ln(\frac{I_{M}(\lambda)}{I_{R}(\lambda)}) = -\sum_{i} \sigma_{i}(\lambda (S_{i,M} - S_{i,R}))$$
Columna slant diferencial: ΔS

Algoritmo DOAS

XXIII RNE Córdoba, 19 septiembre 2012

Huellas espectrales

XXIII RNE Córdoba, 19 septiembre 2012

Factores instrumentales

Temperatura Resolución Factor de sobremuestreo Respuesta espectral Campo de visión (FOV)

MAXDOAS fuera de los crepúsculos

Espectrómetro

Determinación de monóxido de iodo en la troposfera libre subtropical

Algas: Emisión de compuestos orgánicos de tiempo de vida muy corto

Emisión de compuestos orgánicos de tiempo de vida largo

Las observaciones

XXIII RNE

Córdoba, 19 septiembre 2012

Observatorio Atmosférico de Izaña 28ºN 16ºW 2370 masl

Características instrumentales

RASAS II

Detector: Andor Idus Monocromador: Shamrock Fibra óptica: depolarizante, 6m. FOV: 6°

Estabilización de la temperatura: ±0.1°C

Resolución FWHM : 0.45-0.50 nm Sobremuestreo: 3.6 píxeles/ FWHM Medidas a: -1°, 0°, 1°, 2°, 5°, 15°, 30°, 70°, 90°

Azimut 0° (orientación N)

Serie de datos IO

(INTA)

NORS

Córdoba, 19 septiembre 2012

XXIII RNE

Estimación de la proporción de IO

XXIII RNE Córdoba, 19 septiembre 2012 contempla la química conocida de IO.

Muchas gracias por su atención Olga Puentedura: puentero@inta.es

Izaña

Los resultados que se presentan en este trabajo han sido obtenidos gracias a la fin de los proyectos

AMISOC Atmospheric Minor Species Relevant To The Ozone Chemistry At Both Sid Subtropical Jet (Cgl2011 - 24891)

NORS (Demonstration Network Of ground-based Remote Sensing Observations in s the GMES Atmospheric Service) Integrated Project under the 7th Framework Program number FP7-SPACE-2011-284421)

GEOMON (Global Earth Observation and Monitoring) integrated Project under the 6

