

Comparison of ground-based remote sensing and in-situ observations of CO, CH₄ and O₃, accounting for representativeness uncertainty

S. Henne¹, M. Steinbacher¹, E. Mahieu², W. Bader², T. Blumenstock³, E. Cuevas-Agulló⁴, D. Brunner¹, and B. Buchmann¹

- 1) Laboratory for Air Pollution/Environmental Technology, Empa, Dübendorf, Switzerland
- 2) Institute of Astrophysics and Geophysics, University of Liège, Belgium
- 3) Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Germany
- 4) Izaña Atmospheric Research Center, Agencia Estatal de Meteorología (AEMET), Spain

Demonstration Network Of ground-based Remote Sensing Observations in support of the Copernicus Atmospheric Service

- EU FP7 project
- **Start**: Nov. 1, 2011
- Duration: 33 months
- Lead: Martine De Mazière, BIRA

http://nors.aeronomie.be

- Objective:
 - Perform the required research and developments for optimizing the NDACC data for the purpose of supporting the quality assessments of the future Copernicus "The programme formerly known as GMES" Atmospheric Service (GAS MACC-II)

WP5: Integration of tropospheric products

- Extensive characterisation/validation of NDACC tropospheric products using surface in-situ observations at two demonstration sites
- Instruments: FTIR, DOAS, MAXDOAS
- Parameters: CO, CH₄, O₃, NO₂

FTIR & Surface In-situ

Solar Fourier Transform InfraRed spectroscopy

- High resolution allows observation of pressure broadening
- Possible to retrieve vertical profiles using optimal estimation and radiative transfer code
 Operative Capability of the Network for the Network of Management of Amagement of Ama
- Validation using traceable in-situ measurements
 - Aircraft, balloon soundings, UAS, surface

Surface in-situ

- Very good accuracy, since traceable to standards
- Often collocated with FTIR

Difficulties of comparison

- Representativeness
- Lowest FTIR partial column not independent from profile
- > Apply **averaging kernel** (AVK) to reference profile

FTIR & Surface In-situ

FTIR & Surface In-situ

Solar Fourier Transform InfraRed spectroscopy

- High resolution allows observation of pressure broadening
- Possible to retrieve vertical profiles using optimal estimation and radiative transfer code
 Operative Capability of the Network for the Network of Management of Amagement of Ama
- Validation using traceable in-situ measurements
 - Aircraft, balloon soundings, UAS, surface

Surface in-situ

- Very good accuracy, since traceable to standards
- Often collocated with FTIR

Difficulties of comparison

- Representativeness
- Lowest FTIR partial column not independent from profile
- > Apply **averaging kernel** (AVK) to reference profile

Approach

Previous studies

- Take observations from sites that are considered to be representative for lower free troposphere (LFT)
- Average FTIR data up to the level where one independent piece of information is obtained

This study

Sepúlveda et al., 2012, AMT

- Characterise representativeness of different sampled air masses
- Extract cases for which surface fulfills LFT criterion
- Construct "in-situ profiles" by blending surface observation with model profiles

Demonstration Sites

Jungfraujoch, 3580 m asl

Izaña, 2370 m asl

Day-time influence from up-slope winds

Sepúlveda et al., 2012, AMT

In-situ comparison and representativeness

Characterisation of Sampled Air Volumes

- Run backward Lagrangian Particle Dispersion (LPDM) calculations for all different sampled air volumes
- Derive recent (10 days) emission influence
- Simulate mole fractions for long lived tracers (CH₄, CO)
- Analysis of representativeness (comparison of recent influence) for filtering and in-situ extrapolation

Switzerland: MeteoTest Europe: TNO/MACC Global: EDGAR/GFED

TM5

In-situ comparison and representativeness

Concentration Simulations with FLEXPART LPDM

- **FLEXPART** (ECMWF IFS + MeteoSwiss COSMO)
 - Presentation on FLEXPART-COSMO: Friday, B15, 14:30–14:45
- Mean, turbulent and convective transport of air parcels
- Advecting passive tracer
- Run in backward mode (10 d) yielding emission sensitivities
- Input meteorology
 - **2 km x 2 km** MeteoSwiss COSMO Alps; 7 km x 7 km W. Europe
 - 0.2° x 0.2° ECMWF-IFS W. Europe, Canary Islands, 1° x 1° globally

Particle releases (50'000 each)

- In-situ observation: point source
- FTIR partial columns (< 16 km): volume according to viewing geometry</p>

JRS

9RS

In-situ comparison and representativeness

stephan.henne@empa.ch

EGU GA, 2013-04-10, Vienna

EGU GA, 2013-04-10, Vienna

IRS

EGU GA, 2013-04-10, Vienna

JRS

In-situ comparison and representativeness

In-situ comparison and representativeness

In-situ profile LFT mean

In-situ comparison and representativeness

In-situ

profile

LFT mean

In-situ comparison and representativeness

In-situ comparison and representativeness

In-situ comparison and representativeness

Preliminary Results: Izaña CO

Direct comparison

In-situ profile LFT mean

Model LFT mean

In-situ comparison and representativeness

Preliminary Results: Izaña CO

In-situ comparison and representativeness

Preliminary Results: Izaña CO

In-situ comparison and representativeness

Results LFT Conditions

Jungfraujoch

Izaña

Results LFT Conditions

Jungfraujoch

Izaña

CO Annual Cycle

In-situ comparison and representativeness

stephan.henne@empa.ch

EGU GA, 2013-04-10, Vienna

Jungfraujoch: CH₄ and O₃

Jungfraujoch: CH₄ and O₃

Hourly aggregates

Izaña: CH₄ and O₃

Izaña: CH₄ and O₃

In-situ comparison and representativeness

- Method for vertical extrapolation of surface in-situ data and subsequent comparison to FTIR profile data taking representativeness and AVK into account
- FTIR tropospheric products well correlated with surface observations
- Blending of surface in-situ and model data improves comparability to FTIR
 - Improved correlations, reduced RMS, excellent scale
 - Possible bias between FTIR and «in-situ» profile might be due to model initial conditions
- Future developments
 - Refinement of extrapolation method
 - Application of different initial model conditions
 - Analysis of uncertainties

This work received funding from the European Community's 7th Framework Programme (2007-2013) under grant agreement 284421

