

Comparison and merging of ozone profile data from various measurement techniques at 4 NDACC stations

S. Godin-Beekmann, S. Khaykin, M. Pastel LATMOS, OVSQ, UVSQ-UMPC-CNRS, France

NORS WP6

<u>Objective</u>: Develop a methodology for integrating ground-based data sources and provide consistent ozone vertical distribution time series at 4 NDACC stations.

Rationale

Variety of ozone profile measuring techniques providing measurements with different altitude range, vertical resolution, uncertainty, etc...

Example of ozone profile measurements at NyAlesund

Combine the various data sets for easier MACC ozone profile product validation

Measurement techniques

Differential Absorption Lidar technique

- ✓ Active technique
- Emission of two laser radiations at wavelengths characterized by a different ozone absorption cross section (308 nm and 355 nm)

MicroWave Ozone spectrometer

- ✓ Passive technique
- Measures ozone emission lines in the submillimeter range

Fourier Transform InfraRed spectrometer

- ✓ Passive technique
- Atmospheric absorption spectra used for the retrieval of ozone
- ✓ wide spectral range
 600 4500 cm⁻¹
- ✓ high spectral resolution

Vertical resolution

Active remote sensing

Passive remote sensing

OHP lidar PRECISION (%) 25 10 15 20 30 35 40 45 -50 50 45 **40**-] ALTITUDE (KM) 35-] 30-25 20-] PRECISION 15-RESOL n 2 3 5 7 RESOLUTION (KM)

Microwave Bern

FTIR Jungfraujoch

	Altitude range (km)	Resolution(km)
LIDAR	10 – 45	1 – 4.5
Microwave	20 – 60	10 – 15
FTIR	4 – 42	7 – 15
Ozone sondes	0 – 35	0.3

Evaluation of systematic differences

Example of Alpine station

Systematic differences with AURA-MLS

MW - MLS smoothed

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Ozone profile integration

Main steps:

• Smooth higher resolved profiles using $X_s = X_a + A(X_h - X_a)$ AVK (FTIR, MW)

Geophysical bias

Distance between stations:

Bern – Jungfraujoch: ~ 60 km OHP – both other stations: ~ 400 km

Difference between coincident MLS ozone measurements at OHP and Jungfraujoch

Ozone mixing ratio vs equivalent latitude

Equivalent latitude difference between OHP and Bern (°) - 2013

Alpine station

Merged ozone profile data:

nb of meas.

1299

3798

1169

- Smoothed OHP lidar data (Bern MW averaging kernels)
- Bern MW data corrected from climatological bias with MLS
- Jungfraujoch FTIR data corrected using MW a priori profiles
- Smoothed OHP ozone sonde data (Jungfraujoch FTIR averaging kernels)
 448
- Smoothed Payerne ozone sonde data (Jungfraujoch FTIR averaging kernels) 1521

Alpine station

Alpine station

Ozone partial columns

Calculation of WMO tropopause altitude using NCEP data

Comparison of total ozone columns with SAOZ measurements

NyAlesund

<u>Merged ozone profile data</u>	<u>. nb of</u>	[:] meas.
 Smoothed lidar data (M 	W averaging kernels)	129
 MW data corrected from 	n bias with MLS data	1216
 FTIR data 		83
 Smoothed ozone sonde 	e data (FTIR averaging kernels)	811
	Coincidences:	
50- 50- 50- 50- 50- 50- 50- 50- 50- 50-	310 more than 2 meas.	
40	17 More than 3 meas.	
20.	Ny-Alesund, Merged data, monthly means	
10-		O3 vmr
		(ppmv)
600 ^r 2182 DIAL avk		-6
50- H C Srinn - FTIR apr MW apr	Ξ ³⁰ μ	-5
30	[™] ₂₀	-3
20-	10-	-2 1
10-14		
	2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013	_

NyAlesund

merged O3 vs individual

merged O3 vs MLS

Izaña and La Réunion Island

Only FTIR and ozone sondes measurements at both stations few ozone lidar measurements at La Réunion Island over the period

Conclusions

- Ozoneprofile data sets have been produced at 4 NDACC stations together with stratospheric and tropospheric partial columns
- Data delivered within the NORS project and available for use upon request
- Good consistency of the data and good comparison with total ozone measurements (SAOZ)
- Next step: compare with MACC ozone profiles

Thank you for your attention!